referat-ok.com.ua

Для тих хто прагне знань!

Проблемы цикличного развития науки

Введение

Основной структурой познания в наиболее развитых отраслях естествознания является анализ предмета исследования, выражение абстрактных элементарных объектов и последующий логический синтез из них единого целого в виде теоретической модели.

В современном мире наука вызывает у людей не только восхищение, но и опасения. Часто можно услышать, что наука приносит человеку не только блага, но и величайшие несчастья. «Загрязнения атмосферы, катастрофы на атомных станциях, повышение радиоактивного фона в результате испытаний ядерного оружия, озоновая дыра над планетой, резкое сокращение видов растений и животных все эти и другие экологические проблемы люди склонны объяснять самим фактом существования науки. Но дело не в науке, а в том, в чьих руках она находится, какие социальные интересы за ней стоят, какие общественные и государственные структуры направляют ее развитие.

Наука — это сложный социальный институт, и он теснейшим образом связан с развитием всего общества. Сложность, противоречивость современной ситуации в том, что наука, безусловно, причастна к порождению глобальных и, прежде всего, экологических, проблем цивилизации (не сама по себе, а как зависимая от других структур часть общества); и в то же время без науки, без дальнейшего ее развития решение всех этих проблем в принципе невозможно. И это значит, что роль науки в истории человечества постоянно возрастает. И поэтому всякое умаление роли науки, естествознания в настоящее время чрезвычайно опасно, оно обезоруживает человечество перед нарастанием глобальных проблем современности. А такое умаление, к сожалению, имеет подчас место, оно представлено определенными умонастроениями, тенденциями в системе духовной культуры.

1. Возникновение науки и основные этапы ее развития

В ранних человеческих обществах познавательные и производственные моменты были неразделимы, первоначальные знания носили практический характер, выполняя роль как бы руководства определенными видами деятельности человека. Накопление таких знаний составило важную предпосылку будущей науки.

Для возникновения собственно науки нужны были соответствующие условия: определенный уровень развития производства и общественных отношений, разделение умственного и физического труда и наличие широких культурных традиций, обеспечивающих восприятие достижений других народов и культур.

Соответствующие условия раньше всего сложились в Древней Греции, где первые теоретические системы возникли в VI в. до н.э. Такие мыслители, как Фалес и Демокрит, уже объясняли действительность через естественные начала в противовес мифологии, Древнегреческий ученый Аристотель первым описал закономерности природы, общества и мышления, выдвигая на передний план объективность знания, логичность, убедительность. В момент познания была введена система абстрактных понятий, закладывались основы доказательного способа изложения материала; начали обособляться отдельные отрасли знания: геометрия (Евклид), механика (Архимед), астрономия (Птолемей).

Ряд областей знания был обогащен в эпоху средневековья учеными Арабского Востока и Средней Азии: Ибн Ста, или Авиценна, (980—1037), Ибн Рушд (1126—1198), Бируни (973—1050). В Западной Европе из-за господства религии родилась специфическая философская наука — схоластика, а также получили развитие алхимия и астрология. Алхимия способствовала созданию базы для науки в современном смысле слова, поскольку опиралась на опытное изучение природных веществ и соединений и подготовила почву для становления химии. Астрология связана была с наблюдением за небесными светилами, что также развивало опытную базу для будущей астрономии.

Важнейшим этапом развития науки стало Новое время — XVI—XVII вв. Здесь определяющую роль сыграли потребности нарождавшегося капитализма. В этот период было подорвано господство религиозного мышления, и в качестве ведущего метода исследовании утвердился эксперимент (опыт), который наряду с наблюдением радикально расширил сферу познаваемой реальности. В это время теоретические рассуждения стали соединяться с практическим освоением природы, что резко усилило познавательные возможности науки Это глубокое преобразование науки, произошедшее в XVI—XVII вв., считают первой научной революцией, давшей миру такие имена, как Г.Галшей (1564—1642), (1571—1630), У.Гарвей (1578—1657), Р.Декарт (1596—1650), Х.Гюйгенс (1629—1695), И.Ньютон (1643—1727) и др.

Научная революция XVII в. связана с революцией в естествознании. Развитие производительных сил требовало создания новых машин, внедрения химических процессов, законов механики, конструирования точных приборов для астрономических наблюдений.

Научная революция прошла несколько этапов, и ее становление заняло полтора столетия. Ее начало положено Н.Коперником и его последователями Бруно, Галилеем, Кеплером. В 1543 г. польский ученый Н.Коперник (1473—1543) опубликовал книгу «Об обращениях небесных сфер», в которой утвердил представление о том, что Земля так же, как и другие планеты Солнечной системы, обращается вокруг Солнца, являющегося центральным телом Солнечной системы. Коперник установил, что Земля не является исключительным небесным телом, чем был нанесен удар по антропоцентризм и религиозным легендам, в соответствии с которыми Земля якобы занимает центральное положение во Вселенной. Была отвергнута геоцентрическая система Птолемея.

Галилею принадлежат крупнейшие достижения в области физики и разработки самой фундаментальной проблемы — движения, огромны его достижения в астрономии: обоснование и утверждение гелиоцентрической системы, открытие четырех самых крупных спутников Юпитера из 13 известных в настоящее время; открытие фаз Венеры, необычайного вида планеты Сатурн, создаваемого, как известно теперь, кольцами, представляющими совокупность твердых тел; огромного количества звезд, не видимых невооруженным взглядом. Галилей добился успеха в научных достижениях в значительной мере потому, что в качестве исходного пункта познания природы признавал наблюдения, опыт.

Современный мир характеризуется как период бурного развития научно-технических аспектов жизнедеятельности человека, которые естественно находят свое применение в экономической сфере, снижая физическую нагрузку на человека. Однако очевидные преимущества использования научно-технических достижений имеют и обратную сторону, которая в курсе культурологии фиксируется как проблема социокультурных последствий научно-технической революции.

Ньютон создал основы механики, открыл закон всемирного тяготения и разработал на его основе теорию движения небесных тел. Это научное открытие прославило Ньютона навечно. Ему принадлежат такие достижения в области, механики, как введение понятий силы, инерции, формулировка трех законов механики; в области оптики — открытие рефракции, дисперсии, интерференции, дифракции света; в области математики — алгебра, геометрия, интерполяция, дифференциальное и интегральное исчисление.

В XVIII веке революционные открытия были совершены в астрономии И.Кантом (172-4—1804) и П.Латасом (1749—1827), а также в химии — ее начало связано с именем А.Л.Лавуазье (1743—1794). К этому периоду относится деятельность М.В.Ломоносова (1711—1765), предвосхитившего многое из последующего развития естествознания.

В XIX веке в науке происходили непрерывные революционные перевороты во всех отраслях естествознания.

Опора науки Нового времени на эксперимент, развитие механики заложили фундамент для установления связи науки с производством. В то же время к началу XIX в. накопленный наукой опыт, материал в отдельных областях уже не укладывался в рамки механистического объяснения природы и общества. Потребовался новый виток научных знаний и более глубокий и широкий синтез, объединяющий результаты отдельных наук. В этот исторический период науку прославили Ю.Р. Майер (1814—1878), Дж.Джоулъ (1818—1889), Г.Гелъмголъц (1821—1894), открывшие законы сохранения и превращения энергии, что обеспечило единую основу для всех разделов физики и химии. Огромное значение в познании мира имело создание Т.Шванном (1810—1882) и М.Шлейденом (1804—1881) клеточной теории, показавшей единообразную структуру всех живых организмов. Ч. Дарвин (1809—1882), создавший эволюционное учение в биологии, внедрил идею развития в естествознание. Благодаря периодической системе элементов, открытой гениальным русским ученым Д.И. Менделеевым (1834—1907), была доказана внутренняя связь между всеми известными видами вещества.

Таким образом, к рубежу XIX—XX вв. произошли крупные изменения в основах научного мышления, механистическое мировоззрение исчерпало себя, что привело классическую науку Нового времени к кризису. Этому способствовали помимо названных выше, открытие электрона и радиоактивности. В результате разрешения кризиса произошла новая научная революция, начавшаяся в физике и охватившая все основные отрасли науки, Она связана прежде всего с именами МЛланка (1858—1947) и А.Эйнштейна (1879—1955), Открытие электрона, радия, превращения химических элементов, создание теории относительности и квантовой теории ознаменовали прорыв в область микромира и больших скоростей. Успехи физики оказали влияние на химию. Квантовая теория, объяснив природу химических связей, открыла перед наукой и производством широкие возможности химического преобразования вещества; началось проникновение в  механизм наследственности, получила развитие генетика, сформировалась хромосомная теория.

К середине XX века на одно из первых мест в естествознании выдвинулась биология, где совершены такие фундаментальные открытия, как установление молекулярной структуры ДНК Ф. Криком (род. 1916) и Дж.Уотсоном (род. 1928), открытие генетического кода.

Наука в настоящее время — это чрезвычайно сложное общественное явление, имеющее многосторонние связи с миром. Ее рассматривают с четырех сторон (как и любое другое общественное явление — политику, мораль, право, искусство, религию):

1) с теоретической, где наука — система знаний, форма общественного сознания;

2) с точки зрения общественного разделения труда, где наука — форма деятельности, системой отношений между учеными и научными учреждениями;

3) с точки зрения социального института;

4) с точки зрения практического применения выводов науки со стороны ее общественной роли.

В настоящее время научные дисциплины принято подразделять на три большие группы: естественные, общественные и технические. Отрасли науки различаются по своим  предметам и методам. В то же время резкой грани между ними нет и ряд научных дисциплин занимает промежуточное междисциплинарное  положение,  например, биотехнология, радиогеология.

Науки подразделяют на фундаментальные и прикладные. Фундаментальные науки познанием законов, управляющих поведением и взаимодействием базисных структур природы, общества и мышления. Эти законы изучаются в «чистом виде», поэтому фундаментальные науки иногда называют чистыми науками.

Цель прикладных наук — применение результатов фундаментальных наук для решения не только познавательных, но и социально-практических проблем.

Создание теоретического задела для прикладных наук обусловливает, как правило, опережающее развитие фундаментальных наук по сравнению с прикладными. В современном обществе, в развитых индустриальных странах ведущее место принадлежит именно теоретическому, фундаментальному знанию, и роль его все время повышается. В цикле «фундаментальные исследования — разработки — внедрение» — установка на сокращение сроков движения.

2. Цикличность научно-технического прогресса и их влияние на науку

Развитие как философская категория — это процесс самопродвижения от низшего (простого) к высшему (сложного), что раскрывает и реализует внутренние тенденции и сущность явлений, которые ведут к возникновению нового и предопределяют любые изменения разнообразных форм материи.

Развитие есть имманентным (лат. іmmanentіs — присущий, присущий) процессом: переход от низшего до высшего возникает потому, что в низшем в скрытом виде содержится тенденция, которая ведет к высшему, а выше является развитием низшего.

Любой отдельный процесс развития имеет начало и конец, причем уже в начале в тенденции содержится законченность развития. Такой процесс называется циклом (грец. xvxkoq — круг). Понятие цикла рассматривается как совокупность явлений, процессов, работ, которые создают определенную законченность развития на протяжении определенного отрезку времени, например, производственный цикл — полный круг работ, выполнение которых дает готовую продукцию.

Инновационный цикл — круг инновационных процессов, новостей, нововведений, которые реализуются в системе определенного технологического уклада, обеспечивая прогрессивное развитие общества.

Инновационная спираль — это кривая, которая делает постоянно возрастающие витки от какой-то первоначальной точки где-то на зрении человечества. Эта спираль раскручивается без остановки и только вперед и уже в XXІ в. подводит развитые страны к виртуальной (лат. vіrtualіs — возможный, такой, что может проявиться при определенных условиях) экономики, о которой еще имело известно.

Качественные изменения в технике и науке связаны с изменениями в уровне подготовки работников, в образовании; с изменениями в формах организации и управлением производства и в этой взаимосвязи образуют содержание прогресса производительных сил. Этот прогресс может осуществляться как вэволюционной форме постоянного совершенствования, накопления частичных количественных изменений, так и в революционной форме, предполагающей кардинальные изменения, синтезирующей революции техническую, научную, образовательную, в формах организации и управления производством.

Изучение научно-технического прогресса позволило выявить ряд закономерностей, связанных с их цикличной, волнообразной динамикой, которая характерна для протекания многих процессов, для трансформации общества в целом. Следует отметить такие экономические закономерности НТП, как:

  • цикличное развитие и обновление техники;
  • цикличное развитие науки;
  • цикличность научно-технического прогресса, последовательная смена технологических укладов под воздействием НТП;
  • цикличное развитие квалифицированной рабочей силы;
  • цикличность развития образования;
  • цикличное развитие форм организации и управления производством;
  • абсолютное и относительное удешевление техники.

В каждый период времени используется техника разного уровня новизны:

  • принципиально новая техника, в которой воплощаются качественно новые научные идеи и технологические принципы, применение этой техники обеспечивает резкий скачок в повышении эффективности производства;
  • улучшенная техника, позволяющая эволюционно развивать возможности конкретного технологического принципа за счет замены моделей, расширения параметрических рядов машин, улучшения их характеристик;
  • общественно нормальная техника, с помощью которой производится в данное время основная масса изделий;
  • устаревшая техника, которая не обеспечивает нормального уровня эффективности и воплощает уже превзойденный, но до конца еще не вытесненный технологический уровень.
  • В основе технического прогресса, как уже отмечалось, лежит научный прогресс. В каждый период в распоряжении общества имеются научные идеи и знания разной степени новизны:
  • крупные научные открытия, революционно изменяющие основы какой-либо науки или в целом картину мира;
  • развивающие и уточняющие идеи и открытия, которые способствуют упрочению, распространению преобладающей системы взглядов, более эффективной ее реализации в технике;
  • утвердившиеся научные знания, получившие всеобщее признание;
  • устаревшие, опровергнутые новыми знаниями догмы, которые представляют уровень познания прошлых эпох, но сохраняются в силу традиции, либо в интересах слоев общества, незаинтересованных в отказе от них.

Появление новых областей в структуре научного знания привело к необходимости его дифференциации и классификации. Можно говорить о множестве подходов к классификации научного знания, но так или иначе во всех них прослеживается четкая идея: систематизации всех накопленных наукой знаний и их распределения по дисциплинам с тем, чтобы возможной была передача знаний в процессе обучения в школах и университетах, то есть воспроизводство знаний. Образование строится как преподавание отдельных групп дисциплин, а его целью становятся усвоение, накопление и расширение знаний разных наук. К XIX веку сформировался образ дисциплинарно-организованной науки, включающей в себя четыре основных блока научных дисциплин: математику, естествознание, технические и социально-гуманитарные науки.

К середине XX века наука превращается в сферу массового производства знаний. Наряду с процессом дифференциации наук, способствующим углублению и уточнению знаний в узкой области процессов и явлений, происходит процесс интеграции научного знания, использования интегративных и системных методов исследования разных наук. Дисциплинарные методы исследования по мере роста и развития научного познания обнаружили, наряду с плюсами, и минусы. Изучая специфические, частные закономерности определенной области явлений мира, дисциплинарный подход оставляет в стороне выявление общих закономерностей, которые управляют явлениями, фундаментальные законы, раскрывающие взаимосвязи между процессами разных групп, классов, областей природы. Это и привело к необходимости внедрения в науку интегративных, комплексных и междисциплинарных методов исследования, к каковым относятся системный, эволюционный, синергетический подходы, создающие предпосылки для создания современной общей научной картины мира.

Во второй половине XX века под влиянием глобальной компьютеризации и других социальных и технических факторов расширяются возможности общения между учеными, происходит процесс интернационализации между ними. Принадлежность ученого одной стране, одному учреждению, одной школе теряет свое значение. Понятие «научная школа» сменилось на понятия «научное сообщество», «незримый колледж».

Наряду с обозначенными моментами становления науки, формирования ее дисциплинарно-организованного образа следует кратко остановиться и на таком знаменательном для науки и современной культуры в целом факте, как ее проникновение в производство и превращение в производительную и социальную силу.

Начав свое победное шествие в XVII веке, к XVIII-XIX вв. она превращается в бесспорную ценность цивилизации, чему в немалой степени способствовало систематическое внедрение ее результатов в производство, что отражалось в появлении новой техники и новых технологий. Начавшийся в этот период процесс интенсивного взаимодействия науки и техники приводит к особому типу социального развития – научно-техническому прогрессу.

Правомерно задать вопросы: существовало ли до указанного периода техническое знание и что оно собой представляло? Какие факторы способствовали сближению, слиянию естественно-научного и технического знания? В работе Б.И. Иванова и В.В. Чешева «Становление и развитие технических наук»[3] авторы представляют историю развития технического знания, выделяя в нем четыре этапа: донаучный (от первобытно-общинных отношений до эпохи Возрождения), когда технические знания существовали лишь в эмпирических знаниях предметов и средств трудовой деятельности и передавались в процессе обучения конкретным видам деятельности. Акцент при этом делался на необходимости разнообразить действия субъекта в процессе выполнения тех или иных трудовых операций. В этот период наметился процесс дифференциации форм и функций используемых орудий: скребки, долото, шило, резец – каждый из данных видов орудий служил одному виду деятельности. Эти знания, получаемые через опыт и обучение, и принято называть техническими знаниями. Если говорить о донаучных – то это эмпирические знания практической деятельности.

Второй этап в развитии технического знания охватывает период со второй половины XV века до 70-х годов XIX века. Это период, когда наука начинает оказывать влияние на технические знания. Огромное значение здесь имело вхождение общества в эпоху капитализма, сопровождавшееся появлением машинной техники. В свою очередь, машины и машинное производство появляются как результат развития эмпирического и теоретического знания – механики и математики, физики и частично химии. Из всех наук наиболее тесно с производством была связана механика, поскольку она изучает простейшую форму движения материи – перемещение. С ее помощью возможными стали описание процессов и явлений, проведение математических расчетов при применении и использовании технических приспособлений.

Таким образом, появилась возможность по-новому рассматривать технические устройства, которые превращаются в объект научного исследования, создавать их идеальные модели, конструировать и проектировать новые технические объекты. В результате синтеза научного знания и технического опыта возникает научно-техническое знание.

Третий этап в истории научно-технического знания охватывает период с 70-х годов XIX века до середины XX века. Для него характерно превращение технических знаний в отдельную область научных знаний, имеющую свой предмет, методы и средства исследования. Сформировалась и такая специфическая особенность технического знания, как проектирование технических и социальных систем, которое отличается от исследования в естественных науках.

Четвертый этап становления технических знаний охватывает период с 70-х годов XX века до наших дней. Процесс интеграции научных знаний, о котором говорилось выше, проявил себя и в области технического знания – естественные науки взаимодействуют с техническим знанием, в результате чего возникают новые научно-технические дисциплины (электротехника, электроника, радиотехника, рентгенотехника и т.д.). В то же время происходит процесс дифференциации, отделения одних технических наук от других, математизации технических дисциплин.

На сегодняшний день можно говорить о мощном потоке, идущем в направлении от науки к технике и от техники к науке, о процессе единения науки и производства. Это способствует формированию комплексных научно-технических дисциплин, таких как эргономика, системотехника, дизайн системы, теоретическая геотехнология и др.

Заключение

Таким образом, формирование дисциплинарно-организованной науки, затем – междисциплинарного ее образа способствовали ее широкому и систематическому проникновению в новые миры, что создало предпосылки и возможности для технико-технологической инновации во всех сферах жизнедеятельности.

Общий ход развития науки (и особенно естествознания, которое и будет нас интересовать в дальнейшем) включает основные ступени познания природы и мира вообще. Он проходит несколько основных ступеней:

  1. Непосредственное созерцание природы как нерасчлененного целого — идет верный охват общей картины природы при пренебрежении частностями, что характерно для греческой натурфилософии;
  2. Анализ природы, расчленение ее на части, выделение и изучение отдельных вещей и явлений, поиски отдельных причин и следствий, при этом за частностями исчезает общая картина универсальной связи явлений -характерно для начального этапа развития любых конкретных наук, в их историческом развитии, для позднего Средневековья и начала Нового времени;
  3. Воссоздание целостной картины на основе уже познанных частностей путем приведения в движение остановленного, оживления омертвленного, связывания изолированного раньше, то есть на основе соединения анализа с синтезом — характерно для зрелого периода развития конкретных наук и для современной науки вообще.

Список использованной литературы

  1. Иванов Б.И., Чешев В.В. Становление и развитие технических наук. – М., 1977.
  2. Ильин В.В. Философия науки. – М., 2003.
  3. Кохановский В.П. Основы философии науки: Учебное пособие для аспирантов. – Ростов н/Д., 2005.
  4. Очерки истории и теории науки. – М., 1969.
  5. Рузавин Г.И. Философия науки: Учебное пособие для студентов высших учебных заведений. – М., 2005.
  6. Смит А. Исследование о природе и причинности богатства. – М., 1992.
  7. Степин В.С. Теоретическое знание. – М., 2000.
  8. Томпсон М. Философия науки. – М., 2003.
  9. Философия науки / Под ред. С.А. Лебедева: Учебное пособие для вузов. – М., 2004.
  10. Шаповалов В.Ф. Философия науки и техники. – М., 2004.