referat-ok.com.ua

Для тих хто прагне знань!

Мегасвіт: сонячна активність

Вступ

Активна область на Сонці — (АО) — це сукупність змінних структурних утворень в деякій обмеженій області сонячної атмосфери, пов’язана з посиленням у ній магнітного поля від значень 10-20 до декількох (4-5) тисяч ерстед. У видимому світлі найбільш помітним структурним утворенням активної області є темні, різко окреслені сонячні плями, що часто утворюють цілі групи. Зазвичай серед безлічі більш-менш дрібних плям виділяються дві великі, що утворюють біполярну групу плям з протилежною полярністю магнітного поля в них. Окремі плями і вся група зазвичай оточені яскравими ажурними, схожими на сітку структурами — факелами. Тут магнітні поля досягають значень в десятки ерстед.

Протяжності активної області досягають декількох сотень тисяч кілометрів, а час життя — від декількох днів до декількох місяців. Як правило, їх можна спостерігати практично в усіх діапазонах електромагнітного сонячного спектра від рентгенівських, ультрафіолетових і видимих променів до інфрачервоних і радіо хвиль.

На краю сонячного диска, коли активну область видно збоку, над нею, у сонячній короні в емісійних лініях часто спостерігаються протуберанці — величезні плазмові «хмари» химерних форм. Час від часу в активній області відбуваються раптові вибухи плазми — сонячні спалахи. Вони породжують потужне іонізуюче випромінювання (в основному, рентгенівське) і проникаюче випромінювання (енергійні елементарні частинки, електрони і протони). Високошвидкісні корпускулярні плазмові потоки змінюють структуру сонячної корони. Коли Земля потрапляє в такий потік, деформується її магнітосфера і виникає магнітна буря. Іонізуюче випромінювання сильно впливає на умови у верхніх шарах атмосфери і створює збурення в іоносфері.

1. Сонячна активність, її вплив та прояви

Однієї із самих чудових особливостей Сонця є майже періодичні, регулярні зміни різних проявів сонячної активності, тобто всієї сукупності явищ на Сонці. Це і сонячні плями — області із сильним магнітним полем і внаслідок цього зі зниженою температурою, і сонячні спалахи — найбільш могутні і швидкі вибухові процеси, що впливають на всю сонячну атмосферу над активною областю, і сонячні волокна — плазменні утворення в магнітному полі сонячної атмосфери, що мають вид витягнутих (до сотень тисяч кілометрів) волоконоподібних структур.

Коли волокна виходять на видимий край (лімб) Сонця, можна бачити найбільш грандіозні по масштабах активні і спокійні утворення — протуберанці, що відрізняються багатою розмаїтістю форм і складною структурою. Потрібно ще відзначити корональні діри — області в атмосфері Сонця з відкритим у міжпланетний простір магнітним полем. Це своєрідні вікна, з яких викидається високошвидкісний потік сонячних заряджених часток.

Сонячні плями — найбільш відомі явища на Сонці. Вперше в телескоп їх спостерігав Г. Галілей у 1610 р. Ми не знаємо, коли і як він навчився послабляти яскраве сонячне світло, але прекрасні гравюри, що зображують сонячні плями й опубліковані в 1613 р. у його знаменитих листах про сонячні плями, з’явилися першими систематичними рядами спостережень.

З цього часу реєстрація плям те проводилася, те припинялася, те відновлялася знову. Наприкінці ХІ сторіччя два спостерігачі — Г. Шперер у Німеччині й Е. Маундер в Англії вказали на той факт, що протягом 70-літнього періоду аж до 1716р. плям на сонячному диску, очевидно, було дуже мало. Вже в наш час Д. Эдди, заново проаналізувавши всі дані, прийшов до висновку, що дійсно в цей період був спад сонячної активності, названий Маундерівським мінімумом.

До 1843 р. після 20-літніх спостережень аматор астрономії Г. Швабі з Німеччини зібрав досить багато даних для того, щоб показати, що число плям на диску Сонця циклічно міняється, досягаючи мінімуму приблизно через кожні одинадцять років. Р. Вольф з Цюріха зібрав усі які тільки міг дані про плями, систематизував їх, організував регулярні спостереження і запропонував оцінювати ступінь активності Сонця спеціальним індексом, що визначає міру «заплямованості» Сонця, що враховує як число плям, що спостерігалися в даний день, так і число груп сонячних плям на диску Сонця. Цей індекс відносного числа плям, згодом названий «числами Вольфа», починає свій ряд з 1749 року. Крива середньорічних чисел Вольфа зовсім чітко показує періодичні зміни числа сонячних плям [4, c. 79-80].

Індекс «числа Вольфа» добре витримав іспит часом, але на сучасному етапі необхідно вимірювати сонячну активність кількісними методами. Сучасні сонячні обсерваторії ведуть регулярні патрульні спостереження за Сонцем, використовуючи як міру активності оцінку площ сонячних плям у мільйонних частках площі видимої сонячної півсфери (м. ч. п.). Цей індекс якоюсь мірою відбиває величину магнітного потоку, зосередженого в плямах, через поверхню Сонця.

Групи сонячних плям із усіма супутніми явищами є частинами активних областей. Розвита активна область містить у собі смолоскипову площадку з групою сонячних плям по обох сторони лінії роздягнула полярності магнітного полючи, на якій часто розташовується волокно. Усьому цьому супроводжує розвиток корональної конденсації, густина речовини в який принаймні в кілька разів вище щільності навколишнього середовища. Усі ці явища об’єднані інтенсивним магнітним полем, що досягає величини декількох тисяч Гаусс на рівні фотосфери.

Найбільше чітко границі активної області визначаються по хромосферній лінії іонізованого кальцію. Тому був уведений щоденний кальцієвий індекс, що враховує площі і потужності всіх активних областей.

Найдужчий прояв сонячної активності, що впливає на Землю, — сонячні спалахи. Вони розвиваються в активних областях зі складною будівлею магнітного поля і торкаються всієї товщі сонячної атмосфери. Енергія великого сонячного спалаху досягає величезної величини, порівнянної з кількістю сонячної енергії, одержуваною нашою планетою протягом цілого року. Це приблизно в 100 разів більше всієї теплової енергії, котру можна було б одержати при спалюванні всіх розвіданих запасів нафти, газу і вугілля. У той же час це енергія, що випускається всім Сонцем за одну двадцяту частку секунди, з потужністю, що не перевищує сотих часток відсотка від потужності повного випромінювання нашої зірки.

В спалахо-активних областях основна послідовність спалахів великої і середньої потужності відбувається за обмежений інтервал часу (40-60 годин), у той час як малі спалахи й уярчення спостерігаються практично постійно. Це приводить до підйому загального тла електромагнітного випромінювання Сонця. Тому для оцінки сонячної активності, зв’язаної зі спалахами, сталі застосовувати спеціальні індекси, прямо зв’язані з реальними потоками електромагнітного випромінювання [7, c. 32-33].

2. Індекси вимірювання сонячної активності

Останнім часом стало використовуватися у виді індексу, що характеризує ступінь вспышечной активності Сонця, кількість сонячних спалахів за місяць. Цей індекс може бути використаний з 1964 року, коли була введена система визначення, що застосовується зараз, балльности сонячного спалаху в оптичному діапазоні. 3.2. Цикли сонячної активності

Сонячна активність у числах Вольфа і, як з’ясувалося пізніше, і в інших індексах, має циклічний характер із середньою тривалістю циклу в 11.2 року. Нумерація сонячних циклів починається з того моменту, коли почалися регулярні щоденні спостереження числа плям. Епоха, коли кількість активних областей буває найбільшим, називається максимумом сонячного циклу, а коли їх майже немає — мінімумом.

За останні 80 років плин циклу трохи прискорилася і середня тривалість циклів зменшився приблизно до 10.5 років. За останні 250 років самий короткий період був дорівнює 9 рокам, а самий довгий 13.5 років. Іншими словами, поводження сонячного циклу регулярно лише в середньому. У підйомі і спаді сонячних циклів існує деяка закономірність. Можливо, це вказує на існування більш тривалого циклу, рівного приблизно 80-90 рокам. Незважаючи на різну тривалість окремих циклів, кожному з них властиві загальні закономірності.

Так, ніж інтенсивніше цикл, тим коротше галузь росту і тим довше галузь спаду, але для циклів малої інтенсивності саме навпаки — довжина галузі росту перевищує довжину галузі спаду. В епоху мінімуму протягом деякого часу плям на Сонце, як правило, немає. Потім вони починають з’являтися далеко від екватора на широтах ±40°.

Одночасно зі зростанням числа сонячних плям самі плями мігрують у напрямку сонячного екватора, що нахилений до площини орбіти Землі (тобто до екліптики) під кутом у 7°. М. Шперер був першим, хто досліджував ці зміни із широтою. Він і Р. Кэррингтон — англійський астроном-аматор — провели великі серії спостережень періодів звертання плям і установили той факт, що Сонце не обертається як тверде тіло — на широті 30°, наприклад, період звертання плям навколо Сонця на 7% більше, ніж на екваторі [1, C. 36-37].

До кінця циклу плями в основному з’являються поблизу широти ±5°. У цей час на високих широтах уже можуть з’являтися плями нового циклу.

У 1908 р. Д. Хейл відкрив, що сонячні плями володіють сильним магнітним полем. Більш пізні виміри магнітного поля в групах, що складаються з двох сонячних плям, показали, що ці дві плями мають протилежні магнітні полярності, указуючи, що силові лінії магнітного полючи виходять з однієї плями і входять в інше.

Протягом одного сонячного циклу в одній півсфері (північної чи південний) ведуче пляма (по напрямку обертання Сонця) завжди однієї і тієї ж полярності. По іншу сторону екватора полярність ведучого плями протилежна. Така ситуація зберігається протягом усього поточного циклу, а потім, коли починається новий цикл, полярності ведучих плям міняються.

Первісна картина магнітних полярностей у такий спосіб відновлюється через 22 року, визначаючи магнітний цикл Сонця. Це означає, що повний магнітний цикл Сонця складається з двох одинадцятирічних — парного і непарного, причому парний цикл звичайно менше непарного.

Одинадцятирічною циклічністю володіють багато інших характеристик активних утворень на Сонце — площа плям, частота і кількість спалахів, кількість волокон (і відповідно протуберанців), а також форма корони. В епоху мінімуму сонячна корона має витягнуту форму, що додають їй довгі промені, скривлені в напрямку уздовж екватора. У полюсів спостерігаються характерні короткі промені — «полярні щітки». Під час максимуму форма корони округла, завдяки великій кількості прямих радіальних променів [3, c. 4].

3. Особливості впливу сонячної активності на людину

В останні роки всі частіше говориться про сонячну активність, магнітні бури і їхній вплив на людей. Тому що сонячна активність наростає, те питання про вплив цього явища на здоров’ї стає в достатньому ступені актуальним. За останні роки стало зрозуміло, що на людину діє цілий ряд космічних факторів, що викликають зміни в магнітосфері планети в результаті впливу на неї сонячних корпускулярних потоків.

А саме: 1. Інфразвук, що представляє собою акустичні коливання дуже низької частоти. Він виникає в областях полярних сяйв, у високих широтах і поширюється на всі широти і довготи, тобто є глобальним явищем. Через 4-6 годин від початку світової магнітної бури плавно збільшується амплітуда коливань на середніх широтах. Після досягнення максимуму вона поступово зменшується протягом декількох годин. Інфразвук генерується не тільки при полярних сяйвах, але і при ураганах, землетрусах, вулканічних виверженнях так, що в атмосфері існує постійне тло цих коливань, на який накладаються коливання, пов’язані з магнітною бурою.

  1. Чи мікропульсації короткоперіодичні коливання магнітного поля Землі (з частотами від декількох герців до декількох кГц). Мікропульсації з частотою від 0,01 до 10 Гц діють на біологічні системи, зокрема на нервову систему людини (2-3 Гц), збільшуючи час реакції на сигнал, що візьметься, впливають на психіку (1 Гц), викликаючи тугу без видимих причин, страх, паніку. З ними також зв’язують збільшення частоти захворюваності й ускладнень з боку серцево-судинної системи.
  2. Також у цей час міняється інтенсивність ультрафіолетового випромінювання, що приходить до поверхні Землі через зміну озонового шару у високих широтах у результаті дії на нього прискорених часток [6, c. 58].

Під час магнітних бур виявлялися суб’єктивні симптоми погіршення стану хворих, почастішали випадки підвищення артеріального тиску, погіршувався коронарний кровообіг, що супроводжувалося негативною динамікою ЕКГ. Дослідження показали, що в день, коли на Сонце відбувається спалах, число випадків інфаркту міокарда збільшується. Воно досягає максимуму наступного дня після спалаху (приблизно в 2 рази більше в порівнянні з магнітоспокійними днями). У цей же день починається магнітосферна бура, викликана спалахом.

Сонце висвітлює і зігріває нашу планету, без цього було б неможливе життя на ній не тільки людини, але навіть мікроорганізмів. Сонце — головний (хоча і не єдиний) двигун процесів, що відбуваються на Землі. Але не тільки тепло і світло одержує Земля від Сонця. Різні види сонячного випромінювання і потоки часток впливають на її життя.

Сонце посилає на Землю електромагнітні хвилі всіх областей спектра — від багатокілометрових радіохвиль до гамма-променів. Околиць Землі досягають також заряджені частки різних енергій — як високих (сонячні космічні промені), так і низьких і середніх (потоки сонячного вітру, викиди від спалахів). На кінець, Сонце випускає могутній потік елементарних часток — нейтрино. Однак вплив останніх на земні процеси зовсім мале: для цих часток земна куля прозора, і вони вільно крізь нього пролітають.

Тільки дуже мала частина заряджених часток з міжпланетного простору попадає в атмосферу Землі (інші чи відхиляє чи затримує геомагнітне поле). Але їхньої енергії досить для того щоб викликати полярні сяйва і зміни магнітного поля нашої планети, усе це неминуче впливає на все живе і, можливо, неживе на планеті Земля [2, c. 45].

Висновки

Отже, різні види сонячного випромінювання визначають тепловий баланс суші, океану і атмосфери. За межами земної атмосфери на кожен квадратний метр майданчика, перпендикулярного до сонячних променів, припадає трохи більше 1,3 кіловата енергії.

Суша і води Землі поглинають приблизно половину цієї енергії, а в атмосфері поглинається близько однієї п’ятої її частини. Інша частина сонячної енергії (близько 30%) відбивається назад в міжпланетний простір, головним чином, земною атмосферою. Важко собі уявити, що трапиться, якщо на деякий час якась заслінка перегородить шлях цих променів на Землю. Арктичний холод швидко почне охоплювати нашу планету. Через тиждень тропіки занесе снігом. Замерзнуть річки, вщухнуть вітри і океан промерзне до дна. Зима настане раптово і всюди. Розпочнеться сильний дощ, але не з води, а з рідкого повітря (в основному, з рідкого азоту і кисню). Він швидко замерзне і семиметровим шаром покриє всю планету. Ніяке життя не зможе зберегтися в таких умовах. На щастя, всього цього трапитися не може, принаймні, раптово і в осяжному майбутньому, зате описана картина досить наочно ілюструє значення Сонця для Землі.

Сонячне світло і тепло були найважливішими чинниками виникнення та розвитку біологічних форм життя на нашій планеті. Енергія вітру, водоспадів, течії річок і океанів — це запасена енергія Сонця. Те ж можна сказати і про викопні види палива: вугілля, нафта, газ.

Список використаної літератури

  1. Абдусаматов Х. Солнце определяет климат / Хабибулло Абдусаматов // Наука и жизнь. — 2009. — № 1. — С. 34-42
  2. Базилевич Л. Вплив сонячної активності на здоров’я та працездатність людини // Безпека життєдіяльності. — 2003. — № 10. — С. 44-45
  3. Бахмут О. Сонячна активність і прогноз [Текст] : Особливості багаторічної динаміки чисельності кукурудзяного метелика / О.Бахмут // Захист рослин. — 2002. — № 3.- С.4-5
  4. Бреус Т. Биологические эффекты солнечной активности [Текст] / Т.Бреус // Природа. — 1998. — № 2. — С. 76-88
  5. Котляр П. Сиятельные особенности [Текст] / Павел Котляр // Вокруг света. — 2012. — № 12. — С. 172-179
  6. Скрипник В. І. Сонячна активність та біологічні ритми в природі. 11 клас. Бінарний урок з астрономії та біології [Текст] / В. І. Скрипник // Біологія. — 2013. — № 16-18. — С. 57-62
  7. Шигонова О. Спостереження Сонця та метеорних потоків [Текст] / О. Шигонова // Фізика та астрономія в школі. — 2003. — № 5. — С. 31-38